Constructing Projective Resolutions of Modules

Let M be an R-module. A projective (resp. free) resolution of M is a complex P, with P; all projective
(resp. free) modules and P; = 0 for ¢ < 0, together with a map ¢ : Py — M so that the augmented complex

—>P2—>P1—>P0£>M—>O

is exact. It is known (Lemma 2.2.5) that every R-module has a projective resolution; more generally, an
abelian category with enough projectives always has projective resolutions.

Exercise 1 Let k be a field. Consider the ring of polynomials R = k[xz,y, z]. Compute a projective
resolution for M = k%, ¥, Z]/(l, y)"

We build a free resolution, hence projective. See that k[z, y, 2] surjects onto klz, y, Z]/(x v) via

f N [f]. It has kernel (z,y).
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There exists a surjection k[z,y, 2]?> — (x,y), namely (f,g) — fx + gy. As a result, we get
a map dy : k[x,y,2]*> — k[z,y,2] by composition, and note that since k[z,y, z]> — (z,y) is

surjective, im(dy) = im((z,y) — k[x,y, z]). We may write d; as the matrix [z y}; then

- ] E

kz[x,y,z]2 _t 4 k:[x,y,z} & . k[%y’z]/(x,y) — 0
~ A
(z,y)
0 7 ~ 0

-y
The kernel of [x y] is generated by { . By rank-nullity, since k[x,y, 2]? is rank 2 and the
z

image of dj is rank 1, we have
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One can use the program Macaulay2 at http://habanero.math.cornell.edu:3690/|to compute free
resolutions of modules over polynomial rings. To demonstrate how to use it, we compute the previous exercise
in Macaulay2. The commands are as follows.

i1 : R=QQ[x,y,z]
i2 : I=ideal(x,y)
i3 : M=module R/I
i4 : rs=res M

i5 : rs.dd

Exercise 2 Compute a projective resolution for M = klz,y, Z]/(my rz2)"

As always, we have

k[z,y,z] — k[l”y,z}/(
7
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And as there are two generators of the ideal, we have the map d; : k[x,y, 2]*> — k[z,y, 2] given

—z
by di = {xy xz] . The kernel of d; is generated by , since
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[xy xz} I =zyf +xzg=z(yf + z9),
g

and this is zero precisely when described. Thus the free resolution is
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Checking our work against Macaulay2 (note to write I=ideal (x*y,x*z)!) confirms our work

is correct.

Exercise 3 Compute a projective resolution for M = klz,y, Z]/(a:y vz, 23"

We have

k[.’E,y,ZP k[(E,y7Z] ;) k[x’y,z]/( — 0

Ty, 22, 73)



http://habanero.math.cornell.edu:3690/

We need to explore the kernel of [zy zz 2*]. Observe that

] = xyf 4+ x2g + 23h = x(yf + zg + 22h).
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See that the elements [ gz}, [ 0 ] , and [_ﬁ} are elements of the kernel. Thus, we have
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—— k[x,y,2] = k[x,y,z]/( 8y — 0.
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In considering the kernel of [ y 0 —z? ] , we can see that
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It is sufficient that f = 22, g = —z, and h = vy, for then [ yf—z2h ] = [ yar?—z3y } = [
yg+zh y(=2z)+zy

Therefore, our final answer is
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Exercise 4 Consider the ring S = klz,y, z,u,v,w]. Compute a projective resolution for M =

k[x7y7zau7v7w] (|zy ‘yz| |a:z|)
uvirlvwlyrluw

Write Ay = |5 Y], Ao =¥ 2|, and As = |7 Z|. The first steps proceed as normal.

[A1 Az Az]

53 S —<=> M 0.

Now, as before, see that

[A1 Az As] {%] = A1 f + Dog + Ash,

—A —A 0
and that the elements [ AIQ}, [ K 3}, and {*AAs] must be in the kernel. However, by com-
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paring ranks, we see that the next free module must be of rank strictly less than 3, so there

must be a way to express the kernel in fewer relations. Indeed, observe that the matrices
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must be singular, so computing their determinants by expanding along the top rows, we have

xAs —yAz+ zA; =0 and ulAs —vAz+wA; = 0. These now describe our kernel, and we have

0 52 E R e ) BN N V) 0.

Over a polynomial ring, these free resolutions will always have finite length. It is worthwhile to check
that the following will be an infinite free resolution. Let k be a field, let R = k[x,y] and consider the ring

S = R/(a;, y): The free resolution of the S-module M = R/(x) is

[v] (=] (v] [z]

S S S S —=—>M 0.




